

General Number Field Sieve

Mohammadreza Motabar

École Polytechnique Fédérale de Lausanne (EPFL)

Shool of Computer and Communication Science (IC)

September 2023

Supervisor: Dr. Tako Boris Fouotsa

Outlines

- 1 Introduction
- 2 Quadratic Sieve

- 3 The GNFS Algorithm
- 4 Filling in The Details
- 5 References

Introduction

Introduction

RSA is a very popular public key cryptosystem. This algorithm is known to be secure, but this fact relies on the difficulty of factoring large numbers.

GNFS is the **fastest** known method for factoring large given integer N, where large is generally mean over **110** digits.

RSA is a very popular public key cryptosystem. This algorithm is known to be secure, but this fact relies on the difficulty of factoring large numbers.

GNFS is the **fastest** known method for factoring large given integer N, where large is generally mean over 110 digits.

What Is The Idea?

The "difference of squares" method relies upon that if integers x and y are such that $x \not\equiv \pm y \pmod{N}$ and $x^2 \equiv y^2 \pmod{N}$.

Then gcd(x - y, N) and gcd(x + y, N) are non-trivial factors of N.

What Is The Idea?

The "difference of squares" method relies upon that if integers x and y are such that $x \not\equiv \pm y \pmod{N}$ and $x^2 \equiv y^2 \pmod{N}$.

Then gcd(x - y, N) and gcd(x + y, N) are non-trivial factors of N.

Historical Background

- Dixon's Algorithm
- Quadratic Sieve (QS)
- 3 Special Number Field Sieve (SNFS)
- 4 On April 10, 1996, GNFS was used to factorize RSA130.

Mohammadreza Motabar September 2023 4 / 28

Quadratic Sieve

Smooth Numbers

- Factor Base (F) \rightarrow A set of prime numbers.
- k is smooth \rightarrow All primes dividing k are in F.
- \blacksquare k is B-smooth \rightarrow All primes dividing k are less than B.

Smooth Numbers

- Factor Base (F) \rightarrow A set of prime numbers.
- k is smooth \rightarrow All primes dividing k are in F.
- k is B-smooth \rightarrow All primes dividing k are less than B.

Smooth Numbers

- Factor Base (F) \rightarrow A set of prime numbers.
- k is smooth \rightarrow All primes dividing k are in F.
- k is B-smooth \rightarrow All primes dividing k are less than B.

Smoothness Bound & Smooth Integers

- Choose a smoothness bound B.
- Select a range.
- Sieve to locate $\pi(B) + 1$ numbers a_i such that $b_i = (a_i^2 \pmod{N})$ is B-smooth.

Let
$$N = 227179$$
 and $B = 25$. ($\sqrt{N} \approx 476$)

X	$x^2 \pmod{N}$	Factorization	Smooth?
470	-6279	$-3\times7\times13\times23$	Yes
473	-3450	$-2 \times 3 \times 5^2 \times 23$	Yes
476	-603	$-3^2 \times 67$	No
477	350	$2 \times 5^2 \times 7$	Yes
482	5145	$3 \times 5 \times 7^3$	Yes
493	15870	$2 \times 3 \times 5 \times 23^2$	Yes

$$(477 \times 482 \times 493)^{2} = 477^{2} \times 482^{2} \times 493^{2}$$

$$\equiv (2 \times 5^{2} \times 7)(3 \times 5 \times 7^{3})(2 \times 3 \times 5 \times 23^{2})$$

$$\equiv 2^{2} \times 3^{2} \times 5^{4} \times 7^{4} \times 23^{2}$$

$$\equiv (2 \times 3 \times 5^{2} \times 7^{2} \times 23)^{2} \pmod{227179}$$

And also:

$$477 \times 482 \times 493 \equiv 212460 \pmod{227179}$$

 $2 \times 3 \times 5^2 \times 7^2 \times 23 \equiv 169050 \pmod{227179}$

Finally:

$$\left. \begin{array}{l} gcd(227179,212460+169050) = 157 \\ gcd(227179,212460-169050) = 1447 \end{array} \right\} 227179 = 157 \times 1447$$

Finding Square

For each number construct the vector $(x_{-1}, x_2, x_3, x_5, x_7, x_{11}, x_{13}, x_{17}, x_{19}, x_{23})$ where x_p is exponent of p parity (and $x_{-1} = 1$ if $x^2 - N < 0$ and is 0 if $x^2 - N > 0$).

X	$x^2 \pmod{N}$	Factorization	Vector
470	-6279	$-3\times7\times13\times23$	(1, 0, 1, 0, 1, 0, 1, 0, 0, 1)
473	-3450	$-2\times3\times5^2\times23$	(1, 1, 1, 0, 0, 0, 0, 0, 0, 1)
477	350	$2 \times 5^2 \times 7$	(0, 1, 0, 0, 1, 0, 0, 0, 0, 0)
482	5145	$3 \times 5 \times 7^3$	(0, 0, 1, 1, 1, 0, 0, 0, 0, 0)
493	15870	$2\times3\times5\times23^2$	(0, 1, 1, 1, 0, 0, 0, 0, 0, 0)

Try to solve $M^T x = 0$ and then split N.

The GNFS Algorithm

Generalizing The QS

Suppose a ring R and a ring homomorphism $\phi: R \to \mathbb{Z}/N\mathbb{Z}$ exist. If $\beta \in R$ with $\phi(\beta^2) = y^2 \pmod{N}$ and $x := \phi(\beta) \pmod{N}$ then:

$$x^2 \equiv \phi(\beta)^2 \equiv \phi(\beta^2) \equiv y^2 \pmod{N}$$

Fields And Roots of Irreducible Polynomials

Suppose a monic, irreducible polynomial f(x) of degree d with rational coefficients and a root $\theta \in \mathbb{C}$ of f(x), is known.

Then for the associated ring $\mathbb{Q}(\theta)$, the following hold:

- $\mathbb{Q}(\theta) \cong \mathbb{Q}[x]/\langle f(x) \rangle$ and it is a field.
- The set $\{1, \theta, \theta^2, \cdots, \theta^{d-1}\}$ forms a basis for $\mathbb{Q}(\theta)$ as a vector space over \mathbb{Q} .

Rings of Algebraic Integers

- $lpha \in \mathbb{C}$ is called an algebraic integer if it is the root of a monic polynomial with integer coefficients.
- The set of all algebraic integers in $\mathbb{Q}(\theta)$, denoted \mathfrak{O} , forms a subring of the field $\mathbb{Q}(\theta)$.
- The set of all \mathbb{Z} -linear combinations of the elements $\{1, \theta, \theta^2, \cdots, \theta^{d-1}\}$, denoted $\mathbb{Z}[\theta]$.

Producing a Difference of Squares

If $m \in \mathbb{Z}/N\mathbb{Z}$ for which $f(m) \equiv 0 \pmod{N}$, the mapping $\phi : \mathbb{Z}[\theta] \to \mathbb{Z}/N\mathbb{Z}$ with $\phi(1) = 1$ and $\phi(\theta) = m$ is a surjective ring homomorphism.

$$\prod_{(a,b)\in U}(a+b\theta)=\beta^2\quad,\quad\prod_{(a,b)\in U}(a+bm)=y^2$$

with $\beta \in \mathbb{Z}[\theta]$, $y \in \mathbb{Z}$ and $\phi(\beta) = x \in \mathbb{Z}/N\mathbb{Z}$ then we have:

$$x^{2} \equiv \phi(\beta)^{2} \equiv \phi(\beta^{2}) \equiv \phi(\prod_{(a,b)\in U} (a+b\theta))$$

$$\equiv \prod_{(a,b)\in U} \phi(a+b\theta) \equiv \prod_{(a,b)\in U} (a+bm) \equiv y^{2} \pmod{N}$$

Smoothness And The Algebraic Factor Base

- It seams we can use irreducible elements of the ring $\mathbb{Z}[\theta]$ in the factor base.
- But $\mathbb{Z}[\theta]$ may not be a UFD.
- lacksquare We can go around this problem by considering ideals of $\mathbb{Z}[heta]$ of a special form

The high-level idea then is to choose a set I of prime ideals of \mathfrak{O} , which will use as algebraic factor base.

Smoothness And The Algebraic Factor Base

- It seams we can use irreducible elements of the ring $\mathbb{Z}[\theta]$ in the factor base.
- But $\mathbb{Z}[\theta]$ may not be a UFD.
- lacktriangle We can go around this problem by considering ideals of $\mathbb{Z}[heta]$ of a special form

The high-level idea then is to choose a set I of prime ideals of \mathfrak{O} , which will use as algebraic factor base.

Smoothness And The Algebraic Factor Base

- It seams we can use irreducible elements of the ring $\mathbb{Z}[\theta]$ in the factor base.
- But $\mathbb{Z}[\theta]$ may not be a UFD.
- lacktriangle We can go around this problem by considering ideals of $\mathbb{Z}[heta]$ of a special form

The high-level idea then is to choose a set I of prime ideals of \mathfrak{O} , which will use as **algebraic factor base**.

Proposition:

There are exactly d ring monomorphisms from the field $\mathbb{Q}(\theta)$ into the field \mathbb{C} . These embeddings are given by $\sigma_i(\mathbb{Q}) = \mathbb{Q}$ and $\sigma_i(\theta) = \theta_i$ for $1 \le i \le d$, assuming f(x) split over \mathbb{C} as:

$$f(x) = (x - \theta_1)(x - \theta_2) \cdots (x - \theta_d)$$

Definition:

Given an element $\alpha \in \mathbb{Q}(\theta)$, the norm of the element α , denoted by $N(\alpha)$, is defined as

$$N(\alpha) = \sigma_1(\alpha)\sigma_2(\alpha)\cdots\sigma_d(\alpha)$$

$$N(a+b\theta) = \sigma_1(a+b\theta)\sigma_2(a+b\theta)\cdots\sigma_d(a+b\theta)$$

$$= (a+b\theta_1)(a+b\theta_2)\cdots(a+b\theta_d)$$

$$= (-b)^d(ab^{-1}-\theta_1)(ab^{-1}-\theta_2)\cdots(ab^{-1}-\theta_d) = (-b)^df(ab^{-1})$$

Definition:

Given a ring R, and an ideal \mathfrak{J} of R, the $N(\mathfrak{J})$ is defined to be $[R:\mathfrak{J}]$, the number of cosets of \mathfrak{J} in R.

Definition:

A first-degree prime ideal $\mathfrak p$ of a Dedekind domain $\mathfrak O$ is a prime ideal of $\mathfrak O$ such that $N(\mathfrak p)=p$ for some prime integer p.

Proposition:

The set of pairs (r, p) where p is a prime integer and $r \in \mathbb{Z}/p\mathbb{Z}$ with $f(r) \equiv 0 \pmod{p}$ is in bijective correspondence with the set of all first-degree prime ideals of $\mathbb{Z}[\theta]$.

- It can be proved that the only prime ideals of $\mathbb{Z}[\theta]$ occurring in the ideal factorization of a principal ideal of the form $\langle a+b\theta\rangle$ for **coprime** integers a and b are the **first-degree prime ideals** of $\mathbb{Z}[\theta]$.
- And even more important first-degree prime ideal (r, p) occurring in the ideal factorization of $\langle a + b\theta \rangle$ if and only if $a \equiv -br \pmod{p}$.
- The algebraic factor base consists of pairs of all (r,p) corresponding to a first-degree prime ideal with p less than some integer B'.
- And we say $\langle a + b\theta \rangle$ is smooth if the norm of the ideal is smooth.

- It can be proved that the only prime ideals of $\mathbb{Z}[\theta]$ occurring in the ideal factorization of a principal ideal of the form $\langle a+b\theta\rangle$ for **coprime** integers a and b are the **first-degree prime ideals** of $\mathbb{Z}[\theta]$.
- And even more important first-degree prime ideal (r, p) occurring in the ideal factorization of $\langle a + b\theta \rangle$ if and only if $a \equiv -br \pmod{p}$.
- The algebraic factor base consists of pairs of all (r,p) corresponding to a first-degree prime ideal with p less than some integer B'.
- And we say $\langle a + b\theta \rangle$ is smooth if the norm of the ideal is smooth.

- It can be proved that the only prime ideals of $\mathbb{Z}[\theta]$ occurring in the ideal factorization of a principal ideal of the form $\langle a+b\theta\rangle$ for **coprime** integers a and b are the **first-degree prime ideals** of $\mathbb{Z}[\theta]$.
- And even more important first-degree prime ideal (r, p) occurring in the ideal factorization of $\langle a + b\theta \rangle$ if and only if $a \equiv -br \pmod{p}$.
- The algebraic factor base consists of pairs of all (r,p) corresponding to a first-degree prime ideal with p less than some integer B'.
- And we say $\langle a + b\theta \rangle$ is smooth if the norm of the ideal is smooth.

- The ideal $\prod_{(a,b)\in U}(a+b\theta)\mathfrak{O}$ of \mathfrak{O} may not be the square of an ideal.
- Even if it is equal to \mathfrak{J}^2 for some ideal \mathfrak{J} of \mathfrak{D} the ideal \mathfrak{J} need not be principal.
- Even if $\prod_{(a,b)\in U}(a+b\theta)\mathfrak{O}=\gamma^2\mathfrak{O}$ it is not necessary that $\prod_{(a,b)\in U}(a+b\theta)=\gamma^2$.
- Even if $\prod_{(a,b)\in U} (a+b\theta) = \gamma^2$, we need not have $\gamma \in \mathbb{Z}[\theta]$.
 - o If $\prod_{(a,b)\in U}(a+b\theta)=\gamma^2$ with $\gamma\in\mathbb{Q}(\theta)$, then $\gamma\in\mathfrak{O}$ and $\gamma f'(\theta)\in\mathbb{Z}[\theta]$.
 - o $f'(\theta) \prod_{(a,b) \in U} (a+b\theta)$ is the square of an element of $\mathbb{Z}[\theta]$.

Some Obstructions

- The ideal $\prod_{(a,b)\in U}(a+b\theta)\mathfrak{D}$ of \mathfrak{D} may not be the square of an ideal.
- Even if it is equal to \mathfrak{J}^2 for some ideal \mathfrak{J} of \mathfrak{O} the ideal \mathfrak{J} need not be principal.
- Even if $\prod_{(a,b)\in U}(a+b\theta)\mathfrak{O}=\gamma^2\mathfrak{O}$ it is not necessary that $\prod_{(a,b)\in U}(a+b\theta)=\gamma^2$.
- Even if $\prod_{(a,b)\in U} (a+b\theta) = \gamma^2$, we need not have $\gamma \in \mathbb{Z}[\theta]$.
 - o If $\prod_{(a,b)\in U}(a+b\theta)=\gamma^2$ with $\gamma\in\mathbb{Q}(\theta)$, then $\gamma\in\mathfrak{D}$ and $\gamma f'(\theta)\in\mathbb{Z}[\theta]$.
 - o $f'(\theta) \prod_{(a,b) \in U} (a+b\theta)$ is the square of an element of $\mathbb{Z}[\theta]$.

17 / 28 Mohammadreza Motabar September 2023

Quadratic Characters

Proposition:

Let U be a set of (a, b) such that $\prod_{(a,b)\in U}(a+b\theta)=\alpha^2$ for some $\alpha\in\mathbb{Q}(\theta)$. Given a first-degree prime ideal (s, q) that does not divide $\langle a+b\theta\rangle$ for any pair (a,b) and for which $f'(s)\not\equiv 0\pmod q$, it follows that:

$$\prod_{(a,b)\in U}(\frac{a+bs}{q})=1$$

Filling in The Details

- \blacksquare Choosing **odd** degree d for the polynomial.
- 2 Set $m = \lfloor N^{\frac{1}{d}} \rfloor$.
- Consider the base-m form of N:

$$N = m^d + a_{d-1}m^{d-1} + \cdots + a_1m + a_0$$

4 Construct the function

$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0$$

- \blacksquare Choosing **odd** degree d for the polynomial.
- $2 \text{ Set } m = \lfloor N^{\frac{1}{d}} \rfloor.$
- 3 Consider the base-m form of N:

$$N = m^d + a_{d-1}m^{d-1} + \dots + a_1m + a_0$$

4 Construct the function

$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0$$

- \blacksquare Choosing **odd** degree d for the polynomial.
- $2 \text{ Set } m = \lfloor N^{\frac{1}{d}} \rfloor.$
- 3 Consider the base-m form of N:

$$N = m^d + a_{d-1}m^{d-1} + \cdots + a_1m + a_0$$

4 Construct the function

$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0$$

- \blacksquare Choosing **odd** degree d for the polynomial.
- 3 Consider the base-m form of N:

$$N = m^d + a_{d-1}m^{d-1} + \cdots + a_1m + a_0$$

Construct the function

$$f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$$

- $f(m) \equiv 0 \pmod{N}.$
- f(x) is monic.
- f(x) has integer coefficients.
- It may be **reducible**. But it likely leads to splitting N. Since if we have f(x) = g(x)h(x) then N = f(m) = g(m)h(m) which is a non-trivial factorization of N.

Finding First-Degree Prime Ideals of $\mathbb{Z}[\theta]$

Proposition:

When consider as a polynomial in $(\mathbb{Z}/p\mathbb{Z})[x]$, the polynomial $x^p - x$ factor as

$$x^{p} - x = \prod_{i=0}^{p-1} (x - i)$$

- **I** To strip out of f(x) any quadratic or higher degree polynomial that occurs in its canonical factorization into irreducibles, let $g(x) = gcd(f(x), x^p x)$.
- 2 Now let b be any random integer with $0 \le b < p$.
- $g(x-b)|x^p-x=x(x^{p-1}-1)=x(x^{(p-1)/2}-1)(x^{(p-1)/2}+1).$

Sieving

- Fix a value for b and then scan the values within a range u < a < u for values of a + bm that are smooth.
- let p be a fixed prime.

$$p|a+bm\iff a+bm\equiv 0\pmod p\iff a\equiv -bm\pmod p$$

■ We can speed up sieving by using approximate logarithm.

Solving The Equation

We are looking for vector x which satisfy $M^Tx = 0$.

Since M is sparse we can use special algorithms like Lanczos's or Wiedemann's algorithms.

Computing $\phi(\beta)$ When $\beta^2 \in \mathbb{Z}[\theta]$ Is Known

- Fortunately there is a estimation for size of $\phi(\beta)$.
- We can find $\phi(\beta)$ in all \mathbb{F}_{p_i} .
- We can use the Chinese Remainder theorem to find $\phi(\beta)$ in $\mathbb{Z}/N\mathbb{Z}$.

Proposition

Let f(x) be a monic, irreducible polynomial of **odd** degree d with integer coefficients. Then for any $\alpha \in \mathbb{Q}[\theta]$ it follows that $N(-\alpha) = -N(\alpha)$.

Proposition

The norm of an element α in the finite field \mathbb{F}_q with $q=p^d$ may be computed as

$$N_p(\alpha) = \alpha^{\frac{p^d - 1}{p - 1}}$$

Computing $\phi(\beta)$ When $\beta^2 \in \mathbb{Z}[\theta]$ Is Known

- Fortunately there is a estimation for size of $\phi(\beta)$.
- We can find $\phi(\beta)$ in all \mathbb{F}_{p_i} .
- We can use the Chinese Remainder theorem to find $\phi(\beta)$ in $\mathbb{Z}/N\mathbb{Z}$.

Proposition:

Let f(x) be a monic, irreducible polynomial of **odd** degree d with integer coefficients. Then for any $\alpha \in \mathbb{Q}[\theta]$ it follows that $N(-\alpha) = -N(\alpha)$.

Proposition:

The norm of an element α in the finite field \mathbb{F}_q with $q=p^d$ may be computed as

$$N_p(\alpha) = \alpha^{\frac{p^d-1}{p-1}}$$

Computing Square Root of δ in $\mathbb{F}_{p^d}^*$

Assume $p^d-1=2^rs$ where s is odd, the idea is to produce a sequence of elements λ_i and ω_i in \mathbb{F}_{p^d} such that $\omega_i^2=\lambda_i\delta$, with the order o_{i+1} of λ_{i+1} strictly less than the order o_i of λ_i .

If η is quadratic non-residue in $\mathbb{F}_{p^d}^*$ then:

- 1 Let $\lambda_0 = \delta^s$ and $\omega_0 = \delta^{(s+1)/2}$
- $\lambda_{i+1} = \lambda_i \eta^{s2^{r-m}}$ which m is the order of λ_i .

Complexity

The basic cost of the algorithm is $u^{2+o(1)} + y^{2+o(1)}$ as N tends to infinity. By trying to minimize this expression we got:

$$\ln y \approx \ln u \approx (\frac{8}{9})^{\frac{1}{3}} (\ln N)^{\frac{1}{3}} (\ln \ln N)^{\frac{2}{3}}$$

And:

$$u^{2+o(1)}+y^{2+o(1)}\approx e^{(\frac{64}{9})^{\frac{1}{3}}(\ln N)^{\frac{1}{3}}(\ln \ln N)^{\frac{2}{3}}}=L_N[\tfrac{1}{3},(\tfrac{64}{9}))^{\frac{1}{3}}]$$

Any Question?

References

```
Briggs, Matthew E. "An Introduction to the General Number Field Sieve". In: Master Thesis (1998).
```

Buhler, J. P., H. W. Lenstra, and Carl Pomerance. "Factoring integers with the number field sieve". In: 1993. DOI: 10.1007/bfb0091539.

Couveignes, Jean-Marc. "Computing a square root for the number field sieve". In: 1993. DOI: 10.1007/bfb0091540.

Forbes, Tony. "Prime numbers: A computational perspective, by Richard Crandall and Carl Pomerance. Pp. 545. 2001. ISBN 0 387 94777 9 (Springer-Verlag).". In: The Mathematical Gazette 86 (507 2002). ISSN: 0025-5572. DOI: 10.2307/3621190.

Gerhard, Jurgen, Modern computer algebra: Third edition, 2011, DOI: 10.1017/CB09781139856065.

Jarvis, Frazer, Algebraic Number Theory, Springer Cham, 2014, DOI: 10.1007/978-3-319-07545-7.

Knott, Ron. "Prime numbers - a computational perspective (2nd edn), by Richard Crandall and Carl Pomerance. Pp. 597. £42.50 (hbk). 2005. ISBN 0-387-25282-7 (Springer Verlag).". In: The Mathematical Gazette 92 (523 2008). ISSN: 0025-5572. DOI: 10.1017/s0025557200182932.

Montgomery, Peter L. "A block Lanczos algorithm for finding dependencies over GF(2)". In: vol. 921. 1995. DOI: 10.1007/3-540-49264-X_9.

Stevenhagen, Peter. "THE NUMBER FIELD SIEVE Peter Stevenhagen". In: Wstein. Org (2004).